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We examine the lxoblem of the encounter of conflict-controlled objects with 
a specified set at a fixed instant of t ime. We present one condition under 
which such a problem has a solution. The results are closely related to those 
in [ 1 - 7 1 .  

1 o We consider a dynamic system of two controlled objects. One of them, subject 
to the fl~t player, is described by the linear differential equation 

dy /d t  = -.4 a) (t) y + B (t) (t) u + ](t) (t) (t  .1) 

where y is an n(t)-dimensional vector. The other object, subject to the second player, 
is described by the. equation 

dr~dr = A (0") (t) z + B e') (t) v + ~2) (t) (1.2) 

Here z is an n(2)-dimensional v~c l~ .  The game is played on a specified t ime interval 
[to, 0 ]. At each instant the players' controls are com~ained by 

u i t ] ~ P ,  v [ t l ~ Q  (1.3) 

where P ,  Q ate convex compacta in the appropriate vecr~x spaces .  

By {p } m we denote the vector comprised of the first m coordinates of a vector p 
and we let p (q, N)  denote the Euclidean distance from a point.q to a set N .  By the 
game's  hypotheses, ill the phase space {x}m = {z --Y}m (m ~ n(t)  m ~ n (°-)) a 
convex compact  set M is specified and an initial game position {to, Yo, z0},  Y [to] ---- 
Yo, z [t o] ----- z 0 , is fixed. The t in t  player, dealing with control u, strives to minimize 
at imtant ~ the quantity 

V = ~ ( { z  - - y } ~ ,  M)  (1.4) 

The second player, by choosing control z,, su2ves to maximize the value of the payoff 
7 in (1.4)  at ~ is  same instant ~ .  

Let m make the problem statement more precise. By the t in t  player's position stra- 
tegy we mean a function U = U (t, y, z) which associates a convex compact  set U 
with every game position {t, y, z} where U ~ P .  Any integrable realization v = 

v [t] (t o ~<~ t ~<~0), constrained by the condition v [t] ~ Q, is admiuible  for the se- 
cond player, moreover, this realization v [t] can be produced on the basis of an arbit- 
rary control law using any conceivable information on the cotu~e of the process. Let A 
be some partitioning of the interval [to, ~ ] into a finite number of ~ by the points 
• i (i ----- O, t . . . .  ). Any absolutely continuous function y.~ It] = y~ It; to, Y0, 
U] satisfying the relation 

dy ,~ /d t  = A ~) (t) y~ + B (~) (t) u [ ~ ]  + )'(x) (t) ( t .5)  
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for almost all values of t ~ ITs, zt+l] is called an approximate motion of system 
(1.1). Here u [~] ~ U (~, y~ I~], z~ Ix~]), where the motion z [t] = z It; to, 
Z0, v~ [. ]] is generated by the integrable function v~ [. ] = v.~ [t] and satisfies Eq. 
(1.2) almost everywhere. An absolutely con~inuom function y It] = y [t; to, Y0, US 
is called the motion of system (1.1), generated by the swategy U and by the initial 
conditiom y [to] = Y0, if  there exists a sequence of approximate motions y ~  ItS of 
(1.5), converging uniformly to y ItS, i. e. 

l i ra  y ~  [t]  = y ItS, l i ra  ¢~ (a~)  = 0 

C a )  = maxi (Ti+1 - -  Ti) 

,The generating motiom z ItS = z [t; t o, z0, v ~ [ -  ]] of me function v ~ [ t ]  can vary 
arbi~arlly as A~ changes, just as long as the sequence v % {t] converges weakly to some 
measurable function v ItS. Using the resul~ of [5] we can show that the family of such 
motions is a nonempsy set compact in itself. We pose the foUowing problem [5]. 

P r o b l e m  1 . 1 .  Let a final instant ~ be given and a target set ~ /  specified. We 
are required to find the ftrst player's optimal minimax slrar~gy Uo = U0 (t, y, z) 
satisfying the condition 

{p ({+ IOl --  y I~)l},~, M) ] X {to, Yo, Zo, Uol} 

rain max  {9 ({z [O] - -  y [~)]~,. M)  I X [to, Yo, Zo, US} 
V "~[.), , [ - ]  

Hem the symbol X | t  o, Yo, Zo, US denotes the family of all motions 

y l . ]  = y [ t ; t o ,  yo, Ul, z [ . l  = z [ t ; t o ,  Zo, V [ - ] l , v [ - l ~ Q  

of systems ( I . I ) , ( 1 .2 ) ,  cm'responding to the initial position y [to] = Yo, z [t 0] = z 0. 

. The excxemal construction introduced in [ I ,  5, 6] is the foundation for solvin~ 
Problem I . I .  For completeuem of presentation we describe the fundamental elements 
of this comcruction. By y It, ~], Z It, ~] we denote the fundamental macr/ces of the 

following equatiom: dy /d t  = A ~> (t) y, d z /d t  = A (~> ( t) z 

For each vector {t, y, z} and for an m-dimemional vector l we define the function 
6 

y, = (t, y, z) - I + t)  2.i) 

Here the prime denotes =amposition and the quantities x .  (t, y, z), p~, (t, l), P¢ (t, l), 
p ~  (/) are given by the relations 

OP (t, l) = m a x . e p  l '  {Y [~), t] S ~' (t) u}m (2.2) 

pc (t, l) = m a x , ~ ¢ l '  {Z [g, tl B <'> (t)v}~ (2.3) 
p~  (l) = max,,,~.. I'm 

Zo (t, y, z) = {Z [0, t] z - -  Y [0, t] y}~, + 
g g 

t ~rtt 

we now set 
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s( t ,  y, z) = maxBlU.~ ¢P (t, y, z, l) (2.4) 

No~e that in the region e (t, y~ z) ~ 0 the quantity e (t, y, z) defines the program 
maximin distance of the phase point {x (~) }m = {z (~) - - y  (~) }m from set M if the 
auxiliary program game had started from the position y (t) = y, z (t) = z (see [5]). 
For each vector {t, y, z} we specify a set L 0 (t, y, z) of m-dimemional  vectors l 0. 

Lo (t, y,  z) = {/o :li Zo II - -  t ,  ~ (t, y, z, Zo) = ~ (t, y, z))  (2,5) 

where the quantities (p (t, y, z, lo), e (t, y, ¢) have been defined by formulas (2.1),  
(2.4).  Clearly, each of rhe  sets Lo (t, y, z) is closed and bounded. Let us assume that 
the following condition is fulfilled. 

C o n d i t i o n  2 . 1 .  In the region ~ (t, y, z) ~ 0 we can specify, for each vector 
v* ~ Q , a vector U* ~ P such that the inequality 

(t, u* ,  

(t, u.  v, l) = pp (t, l) - -  pQ (t, l) -~- l '  

v*, lo) ~ 0 (2.6) 

{Z [~}, t] B("-~ (t) v},~ - -  l' { Y  [0, t] B(t) (t)u},~ 
(2.7) 

where the quantities PP (t, l), Po (t, Z) are defined by conditiom (2.2) . (2.3) ,  is valid 
for all vectors l 0 ~ L0 (t, y, z) simultaneously. 

We specify a set H (t, y, z) in the m-dimemional space {h}m . We say that h 
H (t, y, z) if and only if the inequality 

Po (t , lo) - -  Pp (t, lo) > lo'h (2.8) 

is valid for all vectors l 0 ~ Ln (t, !/, z) of (2. S). Obv/omly, the sets H (t, y, z) 
are convex and closed. Let us prove the following lemma. 

L e m m a 2 . 1 .  For the fulfillment of Condition 2.1 it is necessary and sufficient 
that each of the se= H (t, y, z) be nonempty and that the inequality 

maxiLes s 'h > Po (t, s) - -  9P (t, s), H = H (t, y, z) (2.9) 

hold for any m-dimemional  vector s .  
Indeed, suppose that Condition 2.1 is valid. Consequently, for any vector v* ~ Q we 

can find a vector u* ~ P satisfying inequality (2. 6). Then from ~ definition of se~s 
H (t. y, z) we obtain 

{Z (~, t) B ~ (t) v*),n - -  {Y (,~, t) B ~t) (t) u * } , . ~ H  (t, y, :) 

Therefore. the inequality 

max s'h~ s' {Z(~, t) B (~) (t) v*}m --s' {Y (~, t) B(x) (t) u"}m (2.t0) 
h ~ H  

is fulfilled for any vector ~. From rids and from (2.2) we have 

max s'h > 8' {Z (~, t) B (~ (t) v*},. - -  Op (t, s) (2.it) 
h ~ H  

Since relation (2.11) is valid for any vector v* ~ Q, we finally obtain inequality (2.9) 
~om (2.11). (2.3). 

Conversely, suppose that (2. 9) is fulfilled. We specif 7 an arbirrm'y vector v* E Q. 
Then relation (2. 11) follows immediately from (2. 9). We introduce a convex compact 
s e t  

F (t, v) -- {{Z (~, t) B c~) (t) v -- Y (@, t) B (1) (0 u}m : u ~ P} (2.i2) 
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From the theorem on the separability of convex sets [8] and from (2.11) it follows that 
the intersection of the sets H (t, ~, z) from (2.9) and F (t, v*) from (2.12) is not empty. 
Therefore. there exists a vector u* ~ P for which inequality (2,10) is fulfilled and, 
consequently, inequality (2. 6), which completes the proof of Lemma 2.1.  

8 .  Let us present the ~oof  of an auxiliary asr~rtion with whose help Problem 1.1 is 
solved. In the space of vectors {t, y, z)  we specify a bounded set N.  bor a preassigned 
sufficiently-small positive number ~ ~ 0 we define the set 

r~ = {t, ~, z : {t, y, z} =~ N, t =_ [to, e l ,  8 (t, ~;, z) > ~} (3.t)  
Now let 

L (t . ,  y . ,  z . ,  TI) ---- U Lo (t, y, z) (3.2) 
It. 1~, :1 

where the sets L0 (t, y, z) have been defined by formula (2. 5). The following asser- 
tion is valid. 

L • m m a 3 . 1 .  Let Condition 2.1 be fulfilled. Then, for any number a ~ 0 we 
can find a number -Q ~ 0 such that the estimate 

max  mia  max  ~ ( t , ,  u, v, l) ~ ~ (3.3) 
~ Q  u ~ P  t~L 

holds, where L ~ L ( t , ,  y . ,  ~., ~) is from (3.2) and the function ~b (t, u, v, l) 
is defined by relation (2.7).  Moreover, estimate (3.3) may be made uniform with res- 
pect to aU { t . ,  y . ,  z . }  ~ F~. 

The proof of Lemma 3.1 follows from Condition 2o I as well as from the contlnuizy 
of the function ~ (t, u, v, l) in (2.7) and from the $emicontinulty wlth respect to 
{t, y, z} of the sets Lo (t, y, z) in (2. 5}. 

By y~ It] = y ~ [ t ;  t . ,  y . ,  u], z a [ t ]  = z ~ [ t ;  t . ,  Z., v] we denote themot iom 
of systems (I .  1). ( I .  2), generated on the interval I t . ,  t .  -~- A] by the controls u 
P ,  v ~ Q and by the initial conditions y/, [ t . ]  = y . ,  z~ [ t . ]  = z . .  The following 
lemma is valid. 

L e m m a  3 . 2 .  Let Condition 2 . 1 b e  fulfilled. Then, fo ranumber  a ~ 0  w ecan  
find a number ~ ~ 0 such that fo~ each vecto~ ~ ~ Q we can find a vector u* ---- 

u* ( t . ,  y . ,  z . ,  v*) (u* ~_ P) which for the motions yA [t] = y,, It; t . ,  y . ,  u*], 
Za It] = z~ [t; t . ,  z . ,  v*] ensures the estimate 

s ( t .  ÷ h ,  y,, It .  ÷ ~ ] ,  z,, i t .  ÷ h l )  ~< ~ (t. ,  y . ,  z . )  -+- ~ a  (3.4) 

if  only A ~ ~l. Moreover, estimate (3.4) may be made uniform with respect to all 
{ t . ,  y , ,  Z.} ~ r~ f rom(3 .1 ) .  

Indeed, for the" number ¢z > 0 we can find a number ~ > 0 such that the inequlities 

I ~ (t~, u, t,, l) - -  ~ (t.~, u, v, l) I ~ ct / 2 (3.5)  

max rain max q) ( t . , . ,  v,/) ~ ~t / 2 (3.6) 
~ Q  u ~ P  l~L 

are valid if only Lffiffi L ( t . , y . , : . , 6 )  of (3.2), [ t ~ - - q l ~ ,  I l l ~ =  t,  u ~ P ,  
v ~ Q, t~, t~ ~ [to, ~] .we note that inequality (3 .6 ) i s  fulfilled uniformly with respect 
to all positions {t., y. ,  z.} ~ F~. 

For a known number ~ we can choose a number ~1 (~ ~ 5) such that the estimates 
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are va l id  for a W motions y~ It! = y~ [t; t . ,  y . ,  u], zA [t] = z~ [t; t . ,  z., v] where 
u ~ P, v ~  Q, i f  only I t - - t . l ~ ,  { t . ,  y . ,  z . }  ~ r~. We f i x  an arbitrary vecwr  
,~* E Q and at the position { t . ,  ~., z. }  we define the vector u* = u* ( t . ,  ~., z., v*) 
(u* E P) from the min imum condition 

max ~ (t, ,  u*, v*, l) ---- rain max ~ (t,, ,,, v*, l) (3.8) 
I~L ~ IEL 

Here L == L (t . ,  y . ,  z. ,  8) is from (3 .2 ) , (3 .5} . (2 .6 ) .  Comparing (3 .8)  and (3°6) we 

have max~_L ~p (t., u*. v*, l) ~ =/2 (3.9) 

We now compute  the to ta l  der ivat ive of  the function qD [t, l]-=qD (t; y~ [t], z~[t] , l)  
(I]/][ = 1) in (2 .1)  along the motions yb [t] = y~ [t; t . ,  y . ,  u*], =~ It] = z~ It; t . ,  z. ,  v*] 
on the interval  I t . ,  t .  + A ]  (A ~ 1] o f ( 3 . 7 ) ) .  Using ( 2 . 7 ) . ( 3 . 5 )  we obtain 

d9 [t, z] 
dt == ~ (t, u*, v*,/) 

a~ [t, q = 
dt ~ ~ (t,, u*, v*, l) + ~ (3.10) 

From (2.10),  (3 .9)  follow, in their own team. the es t imates  

dqJ [t, l]ldt ~ =, q~ [t. 1] ffi= ~? (t, y_~ [t], za [t], l) 
q~ [ t .  + &, l I ~< q~ [t. ,  11 + =~ (3.ii)  

if  the vector  I ~ L (t. ,  ~.,  =., 6) of (3.2) ,  (3. 5), ( 3 . 6 ) .  Since we have considered unit 
vectors l, from (3.11),  (2. 3), (3. 2) follows ~ e  inequali ty 

max q~ (t .  + A, y~ [ t .  + A], z~ [t .  + A], l) ~ e (t.. y. ,  =.) + aA (3.i2) 

By ~ of  the choice  of  pumber  1] (11 ~ 6), es t imates  (3. 7) are valid for the motions 
Ya [t] = y=~ It; t . ,  y . ,  u*], =~ It ]  m= z a It; t . ,  : . ,  v*J . Therefore, ~orn (3.12),  as we l l  

as from (2. 3), (2. I), (3.2) ,  we have 

e (t. + A, Ya [t.  -4- At, z~ It .  -4- hi) ~ • (t.,  y . ,  : . )  + =& (3.t3) 

Inequali ty (3 .13)  proves the l emma .  
The def in i t ion of  a u-stable system of  sets was given in [5, 7] .  We present this def t -  

nition in a form suitable for what is to follow. 
D e f i n i t i o n  3 . 1 .  In the phase space {y, z} let there be given a closed set G 

and a system of  nonempty clo~ed sets W (t, O)( t0 ~ t ~ < ~ ) ,  where W ( ~ ,  ~ )  = G. 
The system o f ~  W ( t ,  O) (t  o ~ t ~ )  is said to be u-s tab le  re la t ive  to G i f ,  
whatever  be t .  ~ [to, O] ,  { y . ,  z . }  ~ W ( t . , ~ ) ,  ~ ! ~  [ 0 , ~ - - t . ) ,  f o t a n y c o n -  
stant control ~.~' It] = v* ~ Q we can find a measurable control u*  [" ] = 
u* It] ~ P  ( t .  ~ < t  ~ t .  + 1]) such that  t h e i n c l m i o n  

it,  + hi, z ,  [t,  + nl} w (t. + n, 

is valid for the mot iom y ,  [t] = y ,  It; t , ,  y , ,  u* [ . ] ] ,  z ,  [tl = z ,  [t; t , ,  z , ,  v * ] .  
Let us assume that  the inequali ty 

e (to, Yo, Zo) > 0 (3.t4)  

is fulfilled at the ini t ial  game position {to, Yo, Zo}. In the space of  v e e t o a  {Y, z} 
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we specify the sets W,  (t, ~ ){.t o ~ t ~<~0 ) by the following relation: 

W, (t, O) = (y, z : s (t, y, z) ~ s} (3.15) 

where e = s (to, Y0, z0). Since the function s (t, y, z) is continuous in all atgu- 
menU. it is obviom tha¢ each of the sets Wt  (t, ~ ) is closed. Ftu~ermc~e, raking ine- 
quality (3.14) into account, it can be shown (for example, see [5]) tha¢ the sezs W t  (t, 
0 )  (e = e (to, Y0, zo) ) are not empty. The next asse~on follows horn Lernrna 3.2. 

L e m r n a  3 . 3 .  I fCon~t ion  2.1 is ~lfi l led.  the systern of sets Wt (t, O) is u-stable 
relauve t o M , f { q  : p ( { q ) ~ ,  M) ~ ~}. 

We now aeflne the f ~ t  player's strategy U~ = Ue (t, y, z) in ~ e  following manner 
['7]. If {y, z} ~ Wt ( t , O ) ,  wese¢ U6 (t, y, z) =- P .  Howeves, if {y, z} does 
not belong to set Ws ( t ,O)  o f ( 3 . 1 5 ) , ~ e n  in the set W, (t, O) we pick out all vectors 
w 0 nearest to {y, z) ,  i . e .  

p ({y, z), Wo) = p fly, z}, w ,  (t, 0)) 
As Ue (t, y, Z) we select all vectors U e each of which satisfies the maximum condition 

s'B< ~) (t) u6 ---- max,,~=t, s' Bc~) (t) u (3A6) 

for at least one value of s : x - -  w °. Using the resulU of [7], we can l~ove the follow- 
ing ~ser~on with the aid of Lernrna 3. 3. 

T h e  o r e  rn 3 . 1 .  Lee Condition 2.1 be valid. If the initial game position {to, Yo, 
Zo } is such flint inequality (3.14) is fulfilled, then strategy Ue of (3.16) ensures the 
estimate 

(~; y [~], z [~]) ~ s (to, Yo, Zo) 

for any motions ofsysmrm (1 .1) . (1 .2) :  y It] ffi y [t; to, Yo, Ue], z [t] ~ z It; to, 
zo, v [ . ] ] .  

Condition 2.1 is always fulfilled if each of ¢be sels Lo = L0 (t, y, z) in (2. 5) con- 
sism of a single vectoL which ~ p o n d s  to the regular case of a game, examined in 
C5]. 

4 .  Under certain natural assumptions on the srnoomness of the systems (1.1). (1.2) 
we prove chat Condition 2.1 is also oeceuaty for the function e (t, y, z) in the region 
e (t, y, z) ~ 0 to be the value of the game in Problem 1.1.  Let us amurne ~ a t  the 
matrices Y [0, t] B(t) (t), Z [0, t] B(~) (t) satisfy a Lipschitz condition in t 

Z I0, t~] e <~) (t~) - -  Z 1~, t~] B< ~ (t~) l] ~ B~ ; t~ - -  t~ I (4.2) 

Hem the norm of a rnau'tx C --  {cl j } (i = i . . . . .  n) (/  - -  i . . . .  , k) is specified by 
the relation 

~'pl, 

The following zhec~ern is valid. 
T h e o r e m  4 . 1 .  If the function e (t, y, z) in the region e (t, y, z) ~ 0 is the 

value of ~ e  game, then Condition 2.1 is fulfilled. 
P r o o f .  We assume tim contrary, i .e .  Condition 2.1 is violamd at some .point 

{ t . ,  y . ,  z . }  where e ( t . ,  y . ,  z . )  ~ 0 .Then  we can find a vector v* ~ Q such 
that the inequality 
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m a x t . ~ . ,  ( t , ,  u, v*, lo) ~ ~o > 0 (4.3) 

where Lo = L0 ( t . ,  y . ,  z . )  and the function ~ (t. u, v, l) is defined by formula 
(2.7), is valid ft~ all vectors u ~ P .  By virtue of inequalities (4.1). (4. 2) it is obvious 
that the function ~ (t, u, v, l) also satisfies a Lipschltz condition in t 

I * (t~, u, v, ,) - ~ (t~, u, v, z) I ~< R I t~ - t~ I (4.4)  

Let us arbi~arily specify the first player's position strategy U = U (t, y, z ) .  we 
show that the inequttltty 

( t ,  + 6o, y It,  + 8o], z It, + 8o1) > ~ (t , ,  y , ,  z , )  + L", :~o~lR 
(60 = ~/~o/R) 

where the quantity u 0 is found from relation (4. 3). is fnlfilled for any of motions 
y [t] ---- y [t; t . ,  y . , U ] a n d  foe the motion z It] ---- z [t; t . ,  z . ,  v*], gene.rated by 
strategy U and by the control v it] ----- v* from (4.3) .  To do this we examine the 
sequence of approximate motions y ,~  [t] of (1.5) .  converging uniformly to y [t]. By 
computing the coral derivative of the function q~ [t, l] = q~ (t, y,,~ [t], z.~ [t], l) 
and using (4,4), we have 

dq~ It, l]/dt ~ * (t~, u i t , l l ,  v*, l) - -  RSo ( ~ 0 ,  t . . . . .  p) 

P 

t ~ lt~ ~, t,k÷tl, ~,~÷~ _ t~ k = A~,  ~, a~ = 60 
i - . 1  

(4.5) q~ [ti÷l, 11 - -  q~ [t i  ~, 11 ~ ,  ( t . ,  u [ t i l l ,  v*, l) Ai~ - -  RSo-~i ~ 

From formula (4. 5) there follows, in an obvious way, the inequality 
P 

q~ I t ,  + 60/1 ~ q~ Its, II + ~ ,  * ( t , ,  u ['r~l, v ' l ) / x ~  _ RSo ~ (4.6) 
i m l  

Using the fact that set P is convex, we write the following equaIity: 
P 

( t , ,  u*, v*, l) 6 0 = ~ ~ (t , ,  u {t~kl, v*, l) ~ (4.7) 
i = 1  

P 
(u* 1 p )  

= -67~ u it/:l ~i ~ 
't,m: 1 

we now choose a vec t~  l ,  ~ Lo ( t , ,  y , ,  z , )  satisfying the relation 

( t , ,  u*, v*, l , )  = maxt,~Lo $ ( t , ,  u*, v*, lo) ~ ~o 

From formulas (4. 6), (4. 7), (4. 8) follows the estimate 

q~ i t .  ~- 60, l . ]  ~qD 11., l~.l + ao6o - -  R6o ~" 

Since the vector l .  ~ Lo ( t . ,  y . ,  z .) ,  from this we obtain the obvious inequalities 

q~ It. ~ 60,/ .1 > e (t . ,  y . ,  : , )  + ~o6o --  R6o= 

(4.8) 

e ( t .  -f- 6o, y ~  I t .  + 8o], za~ [ t .  + 60]) > e (t . ,  y . ,  z . )  - -  ~o,26o 
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This proves Theorem 4.1.  
The next assertion follows from Theorems 3 .4 ,  4.1.  
T h e o r e m  4 . 2 .  Inorder for the function ~ (t, y, z) o f (2 .4)  in the region e (t, 

U, z) ~ 0 to be a value of the game. solving Problem 1.1. it is necessary and sufficient 
that Condition 9.1 hold. 

We say that strategy V = U (t, y, z) ensures the encounter of ~szems (1.1) , (1.2)  
with the set M at the instant q ,  if for any motions y [t] = y It; to, Y0, U], z It] = 
z It; t0, z0, v [ .]]  the inclusion 

{z [ t . ]  - -  V i t , l} , .  ~ M 

is valid for at least one valne of t .  = t ,  (y [ . ] ,  z [ .]) (to~t. ~ ) .  By {~M = 
~M (to, Y0, Z0) we denote the first instant at which the equality 

(to, Vo, Zo, " ~ )  = 0 (4.9) 

is fulfilled, where the quantity e (t, y, : ,  #) was defined by relations (2 .1 ) - (2 .4 )  for 
an arbitrary instant ~. We can prove the next theorem by using the results of Lemma 
3.1.  

T h e o r e m  4 . 3 .  Let x~ M = OM (to, Y0, Z o ) b e t h e  finite instant a twhich 
relation (4. 9) is fulfilled for the first time. If Condition 2.1 is valid for the instant ~M, 
there exists the first player's strategy U ensuring the encounter of systems ( L  1), (1.2) 
with set 3~ r at the instant ~M, 

The author thanks N. N. Krasovskii for constant attention to the work and for valuable 
remarks. 
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