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We examine the problem of the encounter of conflict-controlled objects with
a specified set at a fixed instant of time, We present one condition under
which such a problem has a solution, The resuits are closely related to those
in [1-7].

1, We consider a dynamic system of two controlled objects, One of them, subject
to the first player, is described by the linear differential equation

dyidt = AV (t)y + BY (t)u + 1V (¢) (1.1)

where y is an n‘1- dimensional vector, The other object, subject to the second player,
is described by the equation

dzidt = A® (t)z + BO () v + f? () (1.2)

Here z is an n(®-dimensional vector, The game is played on a specified time interval
[25,0]. At each instant the players' controls are constrained by

ultle P, vitl=0Q (1.3)

where P, Q are convex compacta in the appropriate vector spaces,

By {P}m we denote the vector comprised of the first m coordinates of a vector p
and we let 0 (g, V) denote the Euclidean distance from 2 point_q to a set V. By the
game's hypotheses, in the phase space {z},, = {z —y},, (m 'g nQ, m << n®) a
convex compact set M is specified and an initial game position {t,, Yo, 20} . y [Z,] =
Yo, 2 lto] = 2, ,is fixed, The first player, dealing with control , strives to minimize

at instant 9 the quantity ?=0({z —y}m, M) (1.4)

The second player, by choosing control »,swives to maximize the value of the payoff
Y in (1. 4) at this same instant ¢ .

Let us make the problem statement more precise, By the first player’s position stra=-
tegy we mean a function U = U (, y, 2} which associates a convex compact set [/
with every game position {t, y, 2z} where U c P. Any integrable realization v =
v[t] (¢, <t <9), constrained by the condition v |t] & Q, is admissible for the se-
cond player, moreover, this realization v [¢] can be produced on the basis of an arbit-
rary control law using any conceivabie information on the course of the process, Let A
be some partitioning of the interval [¢,, & ] into a finite number of parts by the points

T; (i =0, 1, ...).  Any absolutely continuous function ¥4 [t] = ya [#; 2, y,,
U] satisfying the relation
dya/dt = A% (O ys + BY @ulw] + /@) (1.9)
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for almost all values of ¢ & [t;, T;,,] is called an approximate motion of system
(1.1). Here u [v,) & U (1, ya [1;), 2a [1;]), where the motion z [t] =z {; ¢,
Zg, va [+]1] is generated by the imtegrable function va [-] = va [£] and satisfies Eq,
(1.2) almost everywhere, An absolutely continuows function y lt§ =y [t; t,, y,o, Ul
is called the motion of system (1.1), generated by the strategy [/ and by the initial
conditions y [¢,] = y,, if there exists a2 sequence of approximate motions ya, [¢] of
(1. 5), converging uniformly to y [t], i.e.

limya, [¢] =y [t], lim 6 (Ag) =0

k—eao k-

6 (4) = max;(Tiq — Ti)
The generating motions z [¢] =z [¢; t,, z,, va,[-]] of the function v [¢] can vary
arbitrarily as A, changes, just as long as the sequence v,, [¢] converges weakly to some
measurable function v [¢]. Using the results of [5] we can show that the family of such
motions is a nonempty set compact in itself, We pose the following problem. [5].
Problem 1,1, Leta final instant & be given and a target set } specified, We

are required to find the first player's optimal minimax swategy ', = U, (¢, ¥, 2)
satisfying the condition

P ({z18] — y(08)}m, M)| X (£, Yo, 20, Upl} <

min max {p ({z (8] — y [9]1}m M) | X [to, Y0, 20, U1}
U vl 2[-]

Here the symbol X ¢y, ¥, 29, U] denotes the family of all motions
Y l'] =Y [t; to, Yoo U], 4 ['] =2z [t; tov Zg, ¥ [']]y v [‘] = Q
of systems (1.1), (1. 2), corresponding to the initial position y [£o] = Yo, 2 [£4] = 2.

2, The exwemal construction introduced in [1, 5, 6] is the foundation for solving
Problem 1,1, For completeness of presentation we describe the fundamental elements
of this conswuction, By Y [¢, 1], Z [¢, 1] we denote the fundamental matrices of the

following equations : dyjdt = A© o dz/dt=A(”(t)z

For each vector {¢, v, 2} and for an m-dimensional vector [ we define the function

8 8
Ot Y, 2 D)=Lz (t, 4, 2) — {pp &, Dt + (0o & Dak 2.0)

Here the prime denotes wansposition and the quantities Z, (£, ¥, 2), pp (4, 1), Pa (¢, 1),
pa (1) are given by the relations

pp(t, ) = maxuep U’ {Y [, t] BY () u)m (22
0o (2, 1) = max,el {Z (8, t] B () }m (2.3)
pu(l) = maxpeyl'm
zo(t,y,2) ={Z[®,t]z—Y (&, t]y}m +
3

8
fzie, /@ a - v e,/ @ df
¢ t m

We now set
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e(t, ¥, 2) = maXm 9 (%, ¥, 2, 1) (2.4)

Note that in the region € (£, y, z) > O the quantity e (¢, y, z) defines the program
maximin distance of the phase point {z (8)}, = {2 () —y (8) )} from set M if the
auxiliary program game had started from the position y (¢) =y, z (¢) = z (see [5]).
For each vector {¢, y, z} we specify aset L, (t, ¥, 2) of m-dimensional vectors I,.

LO (tq Y, Z) = {lo : Ii lO " = 1’ ) (tv y’ z, lO) = 8(t7 Y, Z)} (2.5)

where the quantities ¢ (¢, Y, 2, ;), € (¢, ¥, 2) have been defined by formulas (2,1),
(2.4). Clearly, each of the sets L, (£, v, 2) is closed and bounded, Let us assume that
the following condition is fulfilled,

Condition 2,1, In the region & (f, y, z) > 0 we can specify, for each vector
v* & @ ,a vector u* = P such that the inequality

¢ (ta u*$ U*, lo) < O (26)

Yt uv,)=pp(t,) — 0ot 1Y) + U {Z[B, t] B () v}y — U {Y [©, t] BV ()},
(2.7)
where the quantities pp (2, 1), po (¢, I) are defined by conditions (2, 2), (2. 3), is valid
for all vectors [, & L, (¢, y, z) simultaneouwsly,
We specify a set H (2, y, z) in the m-dimensional space {h},, . We say that h &
H (t, y, z) if and only if the inequality

po(t, by —pp(t,l) > WA (2.8)

is valid for all vectors I, & L, (¢, y, z) of (2.5). Obviously, the sers H (¢, y, 2)
are convex and closed, Let us prove the following lemma,

Lemma 2.1, For the fulfillment of Condition 2,1 it is necessary and sufficient
that each of the sets [ (¢, y, z) be nonempty and that the inequality

maxuegSh>»pq(t, ) —pp(t,s), H=H(ty,z) (2.9)

hold far any m-dimensional vector s,

Indeed, suppose that Condition 2,1 is valid, Consequently, for any vector v* & @ we
can find a vector u* & P satisfying inequality (2. 6). Then from the definition of sets
H (. y, z) we obtain

{26, ) B () 0*}m — (Y (&, ) BV () u*)mH (¢ v, 2)
Therefore, the inequality
maxsh s (2 (8, 1) BY () %) — &' (Y (8, 1) BV () u*)n (2.10)

is fulfilled for any vector <, From this and from (2,2) we have
max s’k 2> s (Z(B,t) B (t) v*)y — pp (L, 8) (2.11)
heH

Since relation (2,11) is valid for any vector v* & @, we finally obtain inequality (2,9)
from (2.11),(2. 3).

Conversely, suppose that (2, 9) is fulfilled, We specify an arbitrary vectar v* & Q.
Then relation (2, 11) follows immediately from (2, 8), We introduce a convex compact

set Fit,0) ={{Z@® 1) B® ()0 —Y (B, 8) BY ) u)p : u & P} (2.12)
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From the theorem on the separability of convex sets [8] and from (2,11) it follows that
the intersection of the sets H (¢, y, z) from (2.9) and F (¢, v*) from (2.12) is not empty.
Therefore, there exists 2 vector u® & P for which inequality (2.10) is fulfilled and,
consequently, inequality (2, 6), which completes the proof of Lemma 2,1,

3, Let us present the proof of an auxiliary assertion with whose help Problem 1.1 is
solved, In the space of vectors {¢, /, 2} we specify a bounded set V. tor a preassigned
sufficiently-small positive number § >> 0 we define the set

Ta={t,y,z:{t.y, 2} =N, t< [t 8], e(t,y,2) >B} (3.1)
Now let
L(t*i Yny 2y Tl) =ﬂ 9:} LO (tv Y, Z) (3'2)

(Jt =t | <My =yl <N llz —2, ]l <)

where the sets L, (£, y, z) have been defined by formula (2. 5). The following asser-
tion is valid,

Lemma 3,1. LetCondition 2,1 be fulfilled, Then, for any number @ > 0 we
can find a number 11 >> 0 such that the estimate

max min max ¥ (t,,u, v, ) << (3.3)
veQ usP IEL
holds, where L = L (t,, Yu» %4 M) is from (3,2) and the function ¥ (¢, u, v, 0)
is defined by relation (2, 7). Moreover, estimate (3, 3) may be made uniform with res-
pect to all {ly, Yy, Za} = la.

The proof of Lemma 3,1 follows from Condition 2,1 as well as from the continuity
of the function ¥ (¢, u, », I) in(2.7) and from the semicontinuity with respect to
{t, y, 2} of the sets L, (¢, y, 2) in(2.5)

By ya [t] =ya {t; te, Yur uly 24 (8] =124 [ t,, 24, v] we denote the motions
of systems (1,1), (1. 2), generated on the interval [¢,. ¢, -~ Al by the controls u =
P, v & Q and by the initial conditions y, [¢,] = y,, 2a [t,] = 24. The following
lemma is valid,

Lemma 3,2. LetCondition 2,1 be fulfilled, Then, for a number @ >> 0 we can
find a number n > 0 such that for each vector v* = (Q we can find a vector u* =
U* (Lyy Yno 240 U*) (u* & P) which for the motions ya [t] = ya [t; ty, Y4 u*),
za [t] =24 {t; t,, 2,, v*] ensures the estimate

Bty + A,¥a [2a + AL, za 2 + AD) <& (Bys Yy 24) + 2 (3.4)

if only A <C 7. Moreover, estimate (3,4) may be made uniform with respect to all
{ter Yx» z+} =T from(3.1).
Indeed, for the number « > 0 we can find a number § >> 0 such that the inequlities

(Pt uy 0, ) — (2, u, v, )| /2 (8.5)
i t
ISR e <l oo
are valid if only L = L (ta, ¥», 2. 8) 0 (3.2), [ta— 4| <8, |Il=1, uEP,
VE Q, 1, € [t, §]). We note that inequality (3, 6) is fulfilled uniformly with respect
to all positions {t, ¥e. ze} € T
For a known number § we can choose a number 1 (n < §) such that the estimates
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llyA[t]—y.ll<5v 24 [8] — 24| <6 3.7

are valid for any motions y, [t} = yu [t Ly, Yao ul, 24 [t] = 2z, [#; tu, z, v] where
uEP,vEQ ifonly |t — <N, {ts, Vor 24} E Fp- We fix an arbitrary vector
1* € Q and at the position {t,, y,, z¢} We define the vector u* = u® (tg, Yu, s v¥)
(u* € P) from the minimum condition

max P (t,, u*, v*, [) = mi ty, u, v, .
leLtp(,.,u.v ) m{neaixtp(,uv 1)} 3.8

Here L == L (t,, Vs, 24, 0) is from (3.2), (3. 5),(8.6). Comparing (3. 8) and (3,6) we
have muleb ‘p (t., u‘v 'U., l) < 1/2 (3'9)
We now compute the total derivative of the function ¢z, lj=¢ (t; y, [t], 24 12), 1)

(JI1] = 1) in(2.1) along the motions y, [t] = y, [t; tes Yy ¥*), 25 [t] = z, [t; ter 2a, V*)
on the interval [t,, t, +A] (A < n of (3,7)). Using (2. 7), (3. 5) we obtain
do {t, !
._g.dit.’_.]- - ‘p(t' u‘, Ve, l)
do [t 1 o
cht ] SP(ty w*, 0% H+ 3 (3.10)
From (3.10), (3. 9) follow, in their own turn, the estimates

dptldt<a @t 1= tyslt]alth D)
Plta+48,<Qlt,, l]+ad (3.11)

if the vector ! &€ L (t4, Yu» Ze, ) of (3. 2), (3. 5),(3.6). Since we have considered unit
vectors /, from (3.11),(2.3), (3. 2) follows the inequality

max @ (fs + &, Yy [te + &), 25 [t + A1, ) S & (e Vo, 2) + 08 (3.42)

By virtue of the choice of number 7 (v << 8), estimates (3, 7) are valid for the motions
ya (] = yu [t tus yw, u*], 2, [t] = 24 18 t4, 2y, v*] . Therefore, from (3,12), as well
as from (2, 3), {2.1), (3. 2), we have

e(ta = 8, Yy [fe 4 Al 24 [ta + B)) S E (L Yo 20) + el (3.43)

Inequality (3,13) proves the lemma,

The definition of a y-stable system of sets was given in [5, 7], We present this defi-
nition in a form suitable for what is to follow, '

Definition 3,1, Inthe phase space {y, 2} let there be given a closed set G
and a system of nonempty closed sets W (2, 8 )(t, <t <©), where W (8, ) =G.
The system of sets W(t, &) (t, <t <) is said to be u-stable relative to G if,
whatever be 2, & [Zo, 9], {Yun, 2x} = W ({4, 8), 1 & [0, 8 — t4), for any con-
stant control ¢* [¢] = v* = Q we can find 2 measurable conwol u* [-] =
u* [t = P (t, <t <t, -~ n) such that the inclusion

(Yn [te + 1), 24 [ + M} E Wty +1,9)

is valid for the motions y,, [t] = y, 1¢; ty, Yu U* [-]], 24 (2] =24 [2; L4, 24, V*]0
Let us assume that the inequality

€ (tm Yor zo) > 0 (3'14)
is fulfilled at the initial game position {Zy, Yo, Zo}. In the space of vectors {¥, z}
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we specify the sets W, (2,0 )l <<t <{§) by the following relation:
We(t,®) = {y,z:e(t,y,2) < e} (3.15)

where & =€ (¢y, Yo, 2¢). Since the function e (¢, y, z) is continuous in all argu~
ments,, it is obvious that each of the sets W, (¢, &) is closed, Furthermore, taking ine-
quality (3,14) into account, it can be shown (for example, see [5]) that the sets W, (¢,
%) (e =e (2, y,, 3,)) are not empty, The next assertion follows from Lemma 3,2,

Lemma 3,3, IfCondition 2,1 is fulfilled, the system of sets W, (¢, © ) is u-stable
relative oM ={q : p ({q}m, M) <e}.

We now define the first player's strategy U, = U, (¢, y, 2) in the following manner
7. f {y, 2} & W, (t,9), weset U, (i, y, z2) = P. However,if {y, z} does
not belong to set W, (£,9) of (3.15), then in the set W, (¢, &) we pick out all vectors

wgynearest to {y, z}, i.e,
’ w2 P ({y 2z}, wo) = p({y, 2}, W (£, D))
As U, (t, Y, z) we select all vectors u, each of which satisfies the maximum condition
& BW (t) u, = maXuyep§ BP (H)u (3.16)

for at least one value of § = Z — w°. Using the results of [7], we can prove the follow-
ing assertion with the aid of Lemma 8, 3,

Theorem 3,1, LetCondition 2,1 be valid, If the initial game position {Z,, y,,
Zo} is such that inequality (3.14) is fulfilled, then strategy [/, of (3.16) ensures the

timate
estima e (8 y [8], 2 [8]) < & (24, Yoo 2o)

for any motions of systems (1.1),(1.2): y [t] = y [¢ 4, yo, U.l, 2 [t] = z [£; ¢,
Zgy U [ . ]].

Condition 2,1 is always fulfilled if each of the sews L, = L4 (¢, y, z) in(2,5) con=
sists of a single vector, which cotresponds to the regular case of a game, examined in
[53.

4, Under certain natural assumptions on the smoothness of the systems (1,1), (1.2)
we prove that Condition 2,1 is also necessary for the function & (¢, y, z) in the region
e (¢, ¥, z) >> 0 to be the value of the game in Problem 1,1, Let us assume that the
matrices Y [{, t] BW (¢), Z [9, t] B (¢) satisfy a Lipschitz condition in t

[Y [9, 8] BO(t) =Y [0, t,] BO(t,) << Ry |ty — L (4.1)
1Z 19, 8] B® (8,) — Z {9, ta] BO ()| < Ray s — 1 (4.2)
Here the norm of a matrix C = {¢;;} (i = 1,..., n) (j = 1,..., k) is specified by
the relation n y
ﬂC|| =max5[2| cijz] '
tmm1

The following theorem is valid,

Theorem 4,1, If the function e (¢, y, 2) in the region & (¢, y, z) > O is the
value of the game, then Condition 2,1 is fulfilled,

Proof, We assume the conwary, i, e, Condition 2.1 is violated at some point
{tu, Yu+ 24} Where e(t,, Yy, 2,) >> 0.Then we can find a vector v* = Q such
that the inequality
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maxieL, ¥ (L4 &, V¥, l)) >3, >0 (4.3)
where Lo = Lg (t,, Yy, 24) and the function ¢ (¢, u, v, [) is defined by formula
(2. 7), is valid for all vectors © < P, By virtue of inequalities (4, 1), (4. 2) it is obvious
that the function ¥ (¢, u, v, I) also satisfies a Lipschitz condition in

[ Wt u, 0, ) = (8 u, 0, )| < R| 8 — (4.4)
Let us arbitrarily specify the first player's position strategy U/ = U (¢, y, z) . We
show that the inequality
€ (2y =+ 8o, Y [ta + 8ol, 2 [ty + Ool) > & (t, Ywr Za) + s 20*/R
_ (6o = qyuo/R)

where the quantity o, is found from relation (4, 3), is fulfilled for any of motions
y [t = y 14 ty, Yu,Uland for the motion z [t] = z [#; ¢,, z,, U*], generated by
strategy [/ and by the control v [¢] = v* from (4,3). To do this we examine the
sequence of approximate motions y,, [¢] of (1.5), converging uniformly to y [¢]. By

computing the total derivative of the function ¢ [¢, Il = ¢ (¢, ya, (2], 23, [£], ])
and using (4,4), we have

do [t, I}jdt > ¥ (ty, u[tF], v*, 1) — RS, (=0.1,....p)
P
te [nf, thal, Ta—tF =48 D AF=6
ima]
@ [T, 1l — @ [T, 11 > B (fe u [15], 0%, 1) AF — RBAH (4.5)

From formula (4, 5) there follows, in an obvious way, the inequality

P
@ [ty = Ol > @ [24, 1] + 2 Pty 1 [T:4], v*0) A% — RS (4.6)

ian]

Using the fact that set P is convex, we write the following equality :

)
Py, u*, 0%, 1) 8 = D) Bty ult¥], v*, 1) A" (4.7
=]
1 Y4
(u* = -go-;lu [t"1ake P>

We now choose a vector [, & Lg (f4, Yu: 2y) satisfying the relation
P (ty, u*, %, 1,) = max,er, ¥ (fa u*, V%, b)) > 2o (4.8)
From formulas (4. 6), (4. 7), (4. 8) follows the estimate
@ [tx 5+ Opr L]l > 9 [y, 1] + %gB0 — RE?
Since the vector [, & Lg (fy, Uy, 34), from this we obtain the obvious inequalities
@ [ty = 8o La] > € (tgs Yuo Z4) + @8 — RS’
€ (ty + B0, Ya, L1 + 8ol 24, (84 + 80]) 2 € (L4, Uss 24) — 30,284
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This proves Theorem 4,1,

The next assertion follows from Theorems 3,4, 4.1,

Theorem 4.2, Inorder for the function € (¢, y. z) of (2.4) in the region e (¢,
¥, 2) > 0 to be a value of the game, solving Problem 1.1, it is necessary and sufficient
that Condition 2,1 hold.

We say that strategy [ = U (¢, U, 2) ensures the encounter of systems (1.1), (1.2)
with the set M at the instant &, if for any motions y [¢t] = y [¢; ¢, yo, Ul, z [t] =
z [¢ to, 20, v [-]] the inclusion ‘

{zltxl —y tallm= M

is valid for at least one value of 7y = ¢, (y[-], 2 [:]) (£t << B). By 8y =
Om (to, Yo. Zo) we denote the first instant at which the equality

& (os Yor 2o, Om) = 0 (4.9)

is fulfilled, where the quantity ¢ (¢, y. z, #) was defined by relations (2.1)=(2. 4) for
an arbitrary instant 3. We can prove the next theorem by using the results of Lemma
3.1,

Theorem 4,3, Let Oy = U (¢, Yo, 3o) be the finite instant at which
relation (4, 9) is fulfilled for the first time, If Condition 2,1 is valid for the instant &,
there exists the first player's strategy {7 ensuring the encounter of systems (1.1}, (1.2)
with set J/ at the instant 4.

The author thanks N, N, Krasovskii for constant attention to the work and for valuable
remarks,
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